

Report Number: 23-005756/D002.R001

Report Date: 05/23/2023 **ORELAP#:** OR100028

Purchase Order:

Received: 05/12/23 12:32

This is an amended version of report# 23-005756/D002.R000. Reason: Combine results with report 23-005881/D003.R000.

Customer:

Product identity: CBG Distillate GVL-

Client/Metrc ID: TST638.

Laboratory ID: 23-005756-0002

Summary

Potency:

rotericy.		
Analyte	Result (%)	ODD T-1-1
CBG	72.0	CBG CBD-Total 10.8%
CBD	10.8	• CBD
CBT	1.40	CBT THC-Total <loq< td=""></loq<>
CBE	1.18	CBE
CBN	0.555	CBN (Reported in percent of total sample)
CBC	0.502	CBDV
CBDV	0.0947	• Δ9-THC
CBL	0.0762	• CBL

Residual Solvents:

All analytes passing and less than LOQ.

Pesticides:

All analytes passing and less than LOQ.

Metals:

Less than LOQ for all analytes.

Microbiology:

Less than LOQ for all analytes.

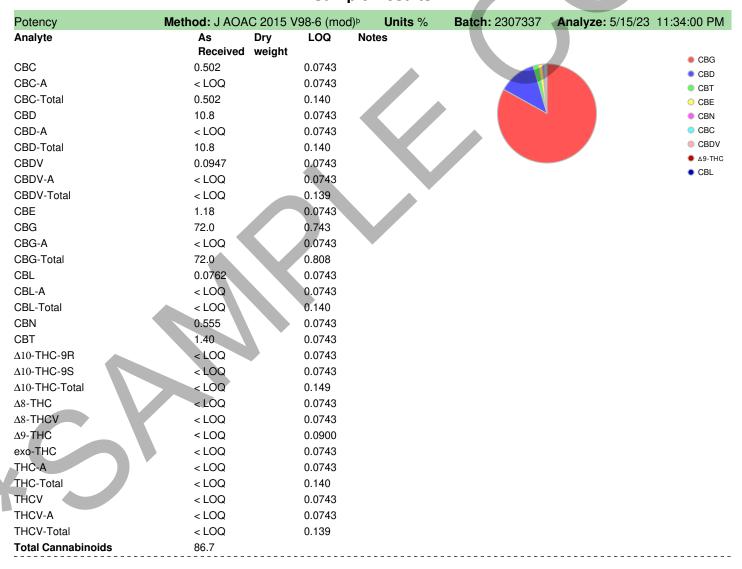
Report Number: 23-005756/D002.R001

Report Date: 05/23/2023 **ORELAP#:** OR100028

Purchase Order:

Received: 05/12/23 12:32

Customer:


Product identity: CBG Distillate GVL-TST638.

Client/Metrc ID: Sample Date:

Laboratory ID: 23-005756-0002

Evidence of Cooling: No
Temp: 27.0
Relinquished by: client

Sample Results

Report Number: 23-005881/D003.R000

Report Date: 05/23/2023 **ORELAP#:** OR100028

Purchase Order:

Received: 05/16/23 00:00

Customer: United States of

America (USA)

Product identity:

Client/Metrc ID: CBG Distillate GVL-TST638

Sample Date:

Laboratory ID: 23-005881-0002

Evidence of Cooling: No Temp: 25 °C

Sample Results

Microbiology						
Analyte	Result	Limits Units	LOQ	Batch	Analyzed Method	Status Notes
E.coli	< LOQ	cfu/g	10	2307365	05/19/23 AOAC 991.14 (Petrifilm) ^b	
Total Coliforms	< LOQ	cfu/g	10	2307365	05/19/23 AOAC 991.14 (Petrifilm) ^p	
Mold (RAPID Petrifilm)	< LOQ	cfu/g	10	2307366	05/19/23 AOAC 2014.05 (RAPID) ^p	
Yeast (RAPID Petrifilm)	< LOQ	cfu/g	10	2307366	05/19/23 AOAC 2014.05 (RAPID) ^b	

Solvents	Method:	Residual	Solve	ents by	GC/MS ^þ	Units μg/g Batch 23	307514	Analyz	e 05/2	22/23 1	1:29 AM
Analyte	Result	Limits	LOQ	Status	Notes	Analyte	Result	Limits	LOQ	Status	Notes
1,4-Dioxane	< LOQ	380	100	pass		2-Butanol	< LOQ	5000	200	pass	
2-Ethoxyethanol	< LOQ	160	30.0	pass		2-Methylbutane (Isopentane)	< LOQ		200		
2-Methylpentane	< LOQ		30.0			2-Propanol (IPA)	< LOQ	5000	200	pass	
2,2-Dimethylbutane	< LOQ		30.0			2,2-Dimethylpropane (neo-pentane)	< LOQ		200		
2,3-Dimethylbutane	< LOQ		30.0			3-Methylpentane	< LOQ		30.0		
Acetone	< LOQ	5000	200	pass		Acetonitrile	< LOQ	410	100	pass	
Benzene	< LOQ	2.00	1.00	pass		Butanes (sum)	< LOQ	5000	400	pass	
Cyclohexane	< LOQ	3880	200	pass		Ethyl acetate	< LOQ	5000	200	pass	
Ethyl benzene	< LOQ	\	200			Ethyl ether	< LOQ	5000	200	pass	
Ethylene glycol	< LOQ	620	200	pass		Ethylene oxide	< LOQ	50.0	20.0	pass	
Hexanes (sum)	< LOQ	290	150	pass		Isopropyl acetate	< LOQ	5000	200	pass	
Isopropylbenzene (Cumene)	< LOQ	70.0	30.0	pass		m,p-Xylene	< LOQ		200		
Methanol	< LOQ	3000	200	pass		Methylene chloride	< LOQ	600	60.0	pass	
Methylpropane (Isobutane)	< LOQ		200			n-Butane	< LOQ		200		
n-Heptane	< LOQ	5000	200	pass		n-Hexane	< LOQ		30.0		
n-Pentane	< LOQ		200			o-Xylene	< LOQ		200		
Pentanes (sum)	< LOQ	5000	600	pass		Propane	< LOQ	5000	200	pass	
Tetrahydrofuran	< LOQ	720	100	pass		Toluene	< LOQ	890	100	pass	
Total Xylenes	< LOQ		400			Total Xylenes and Ethyl benzene	< LOQ	2170	600	pass	

23-005881/D003.R000 **Report Number:**

Report Date: 05/23/2023 ORELAP#: OR100028

Purchase Order:

Received: 05/16/23 00:00

Pesticides	Method: AO	AC 200	7.01 & EN 156	62 (mod) ^þ	Units mg/kg Batch	2307471	Analy	ze 05/19/23	11:56 AM
Analyte	Result	Limits	LOQ Status	Notes	Analyte	Result	Limits	LOQ Status	Notes
Abamectin [¥]	< LOQ	0.50	0.250 pass		Acephate [¥]	< LOQ	0.40	0.200 pass	
Acequinocyl [¥]	< LOQ	2.0	1.00 pass		Acetamiprid [¥]	< LOQ	0.20	0.100 pass	
Aldicarb¥	< LOQ	0.40	0.200 pass		Azoxystrobin [¥]	< LOQ	0.20	0.100 pass	
Bifenazate¥	< LOQ	0.20	0.100 pass		Bifenthrin¥	< LOQ	0.20	0.100 pass	
Boscalid¥	< LOQ	0.40	0.200 pass		Carbaryl¥	< LOQ	0.20	0.100 pass	
Carbofuran¥	< LOQ	0.20	0.100 pass		Chlorantraniliprole*	< LOQ	0.20	0.100 pass	
Chlorfenapyr¥	< LOQ	1.0	0.500 pass		Chlorpyrifos¥	< LOQ	0.20	0.100 pass	
Clofentezine¥	< LOQ	0.20	0.100 pass		Cyfluthrin¥	< LOQ	1.0	0.500 pass	*
Cypermethrin¥	< LOQ	1.0	0.500 pass		Daminozide [¥]	< LOQ	1.0	0.500 pass	
Diazinon¥	< LOQ	0.20	0.100 pass		Dichlorvos¥	< LOQ	1.0	0.500 pass	
Dimethoate¥	< LOQ	0.20	0.100 pass		Ethoprophos¥	< LOQ	0.20	0.100 pass	
Etofenprox¥	< LOQ	0.40	0.200 pass		Etoxazole¥	< LOQ	0.20	0.100 pass	
Fenoxycarb¥	< LOQ	0.20	0.100 pass		Fenpyroximate [¥]	< LOQ	0.40	0.200 pass	
Fipronil¥	< LOQ	0.40	0.200 pass		Flonicamid¥	<loq< td=""><td>1.0</td><td>0.400 pass</td><td></td></loq<>	1.0	0.400 pass	
Fludioxonil¥	< LOQ	0.40	0.200 pass		Hexythiazox [¥]	< LOQ	1.0	0.400 pass	
lmazalil [¥]	< LOQ	0.20	0.100 pass		Imidacloprid*	< LOQ	0.40	0.200 pass	
Kresoxim-methyl¥	< LOQ	0.40	0.200 pass		Malathion¥	< LOQ	0.20	0.100 pass	
Metalaxyl¥	< LOQ	0.20	0.100 pass		Methiocarb¥	< LOQ	0.20	0.100 pass	
Methomyl¥	< LOQ	0.40	0.200 pass		MGK-264¥	< LOQ	0.20	0.100 pass	
Myclobutanil [¥]	< LOQ	0.20	0.100 pass		Naled¥	< LOQ	0.50	0.250 pass	
Oxamyl¥	< LOQ	1.0	0.500 pass		Paclobutrazole [¥]	< LOQ	0.40	0.200 pass	
Parathion-Methyl*	< LOQ	0.20	0.100 pass		Permethrin¥	< LOQ	0.20	0.100 pass	
Phosmet*	< LOQ	0.20	0.100 pass		Piperonyl butoxide¥	< LOQ	2.0	1.00 pass	
$Prallethrin^{Y}$	< LOQ	0.20	0.100 pass		Propiconazole [¥]	< LOQ	0.40	0.200 pass	
Propoxur¥	< LOQ	0.20	0.100 pass		Pyrethrin I (total)¥	< LOQ	1.0	0.500 pass	
Pyridaben¥	< LOQ	0.20	0.100 pass		Spinosad¥	< LOQ	0.20	0.100 pass	
Spiromesifen¥	< LOQ	0.20	0.100 pass		Spirotetramat [¥]	< LOQ	0.20	0.100 pass	
Spiroxamine [¥]	< LOQ	0.40	0.200 pass		Tebuconazole [¥]	< LOQ	0.40	0.200 pass	
Thiacloprid¥	< LOQ	0.20	0.100 pass		Thiamethoxam¥	< LOQ	0.20	0.100 pass	
Trifloxystrobin¥	< LOQ	0.20	0.100 pass						

Metals								
Analyte	Result	Limits	Units	LOQ	Batch	Analyzed Method		Status Notes
Arsenic¥	< LOQ	0.200	mg/kg	0.0942	2307509	05/19/23 AOAC 201	3.06 (mod.) ^þ	pass
Cadmium¥	< LOQ	0.200	mg/kg	0.0942	2307509	05/19/23 AOAC 201	3.06 (mod.) ^þ	pass
Lead¥	< LOQ	0.500	mg/kg	0.0942	2307509	05/19/23 AOAC 201	3.06 (mod.) ^þ	pass
Mercury [¥]	< LOQ	0.100	mg/kg	0.0471	2307509	05/19/23 AOAC 201	3.06 (mod.) ^þ	pass

Report Number: 23-005756/D002.R001

Report Date: 05/23/2023 **ORELAP#:** OR100028

Purchase Order:

Received: 05/12/23 12:32

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220, CCR title 16-division 42. BCC-section 5723

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

p = ISO/IEC 17025:2017 accredited method.

Units of Measure

% = Percentage of sample % wt = μ g/g divided by 10,000

Approved Signatory

Derrick Tanner General Manager